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Final Examination

(i) Answer all questions. (ii) Br(z0) = {z ∈ C : |z − z0| < r}. (iii) H= upper half plane. (iv)
Cr(z0) = {z ∈ C : |z − z0| = r}. (v) A1,2(0) = {z ∈ C : 1 < |z| < 2}.

1. Let f : C→ H be a holomorphic function. Prove that f is a constant.

Answer: Consider g : C→ C defined by g(z) = eif(z). Clearly, g is holomorphic on C as f is
so. Let f = u+ iv. Then v = Im(f) ≥ 0. Now for all z ∈ C

|g(z)| = |e(−v+iu)| = e−v ≤ 1

as v ≥ 0. Therefore g is a bounded entire function. So by Liouville’s theorem, g is constant
and hence f is constant.

2. Identify all the singularities of the following function and determine the nature of each
singularity

z

ez − 1
.

Answer: Let f(z) = z
ez−1 . If ez−1 = 0, then z = 2kπi for k ∈ Z. Therefore the set {2kπi : k ∈ Z}

is the singularity of f . Now limz→0 zf(z) = 0 and hence z = 0 is a removal singularity and
z = 2kπi for k 6= 0 are the simple poles of f as limz→2kπi f(z) =∞.

3. Calculate the residues of the following functions at each of the poles: sinz
z2 and cosz

z2 .

Answer: Clearly 0 is a simple pole of the both functions. From the Taylor series of sinz

and cosz, we have sinz
z2 = 1

z −
z
3! + z3

5! − ... and cosz
z2 = 1

z2 −
1
2! + z2

4! − ...

Therefore Res( sinzz2 , 0) = 1 and Res( coszz2 , 0) = 0.

4. Let z = a be a pole of order n of a function f . Prove that z = a is a pole of order n + 1
of f

′
.

Answer. Since f has a pole of order n at z = a, then f(z) = a−n
(z−1)n + . . .+ a−1

(z−1) +G(z) where

a−n 6= 0 and G is holomorphic in some neighborhood of z = a. Differentiating f we have
f
′
(z) = −na−n

(z−1)n+1 + . . .+ −a−1

(z−1)2 +G
′
(z). Since a−n 6= 0, so f

′
has a pole of order n+ 1 at z = a.

5. Use the residue theorem to compute the following integral∫ ∞
−∞

1

x4 + 1
dx.

Answer. Let f(z) = 1
z4+1 . Then z = (1+i)√

2
, (−1+i)√

2
, (1−i)√

2
and (−1−i)√

2
are the poles of f . Let R > 1

be any real number. Let γ be a closed curve bounded by the upper half circle with radius R
and the interval [−R,R] on the real axis. Then by Residue formula we have∫

γ

f = 2πi[Res(f,
(1 + i)√

2
) +Res(f,

(−1 + i)√
2

)] = 2πi(
1

2i
) =

π√
2

where Res(f, (1+i)√
2

) = − 1+i
4
√

2
and Res(f, (−1+i)√

2
) = − 1−i

4
√

2
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Again ∫
γ

1

z4 + 1
dz =

∫ R

−R

1

x4 + 1
dx+

∫ π

0

iReiθ

R4e4iθ + 1
dθ.

Now |
∫ π

0
iReiθ

R4e4iθ+1
dθ| ≤ Rπ

R4−1 which is tending to zero as R → ∞. Hence from the above we
have ∫ ∞

−∞

1

x4 + 1
dx =

π√
2
.

6.Let Ω be a simply connected domain and 0 /∈ Ω. Find all the branches of z
1
2 in Ω.

Answer. Let z = reiθ, −π < θ ≤ π. Then z
1
2 = r

1
2 e

i(θ+2kπ)
2 for k is any integer and −π < θ < π.

Then for k = 0, w0 = r
1
2 ei

θ
2 and for k = 1, w1 = r

1
2 ei

(θ+2π)
2 = −r 1

2 ei
θ
2 for −π < θ < π. These are

the two branches of z
1
2 in Ω.

7. Prove that every bi-holomorphic map of C has the form f(z) = az + b, where a 6= 0 and b
are in C.

Answer: Let f be a bi-holomorphic map on C. Then f has a pole at ∞ i.e. lim|z|→∞ |f(z)| =
∞. Suppose if not, then there exists a sequence of complex number {zn} such that |zn| → ∞
but |f(zn)| ≤ M for all n for some M > 0. Since f is injective {f(zn)} is a non constant
sequence and subsequence of {f(zn)} converges. Let {f(znk)} converges to w0. Suppose g is an
inverse of the holomorphic function f . Then g(f(znk)) → g(w0). But g(f(znk)) = znk → g(w0)
which is a contradiction. Hence f has a pole at ∞.
Claim: If f has a pole at ∞, then f is a polynomial.
Let f has Taylor series expansion f(z) =

∑∞
n=0 anz

n. Consider g(z) = f( 1
z ) =

∑∞
n=0 an

1
zn . So

if f has a pole of order m at ∞ then g has a pole at zero of order m. So the Laurent
expression of g is of the form

g(z) =
b−m
zm

+
b−(m−1)

zm
+ . . .+

b−1

z
+ b0 + b1z + . . . .

Now uniqueness of the power series of f , we have b−k = ak for 0 ≤ k ≤ m ak = 0 for k > m.
Hence f(z) = a0 + a1z + . . .+ amz

m. But f is injective so we have f(z) = az + b where a 6= 0 as
f has a pole.

8. Let ε > 0 and f : B1+ε(0) → C be a non-constant holomorphic function. Assume that
|f(z)| = 1 if |z| = 1. (i) Prove that f has a zero in D. (ii) Prove that f(D) contains D.

Answer.(i) Suppose f has no zero in the disc D. Using maximum modulus principle we
have |f(z)| < 1 for all z ∈ D as |f(z)| = 1 for |z| = 1. Consider g(z) = 1

f(z) for z ∈ D. Then g

is holomorphic. Also |g(z)| = 1
|f(z)| > 1 for all z ∈ D and |g(z)| = 1 for |z| = 1 which is not

possible due to maximum modulus principle. Hence f has a zero in D.

(ii) For a ∈ D define φa : D→ D by

φa(z) =
z − a
1− āz

.

Consider g = φa ◦ f . Since φa({z ∈ C : |z| = 1}) ⊂ {z ∈ C : |z| = 1} and |f(z)| = 1 for |z| = 1,
|g(z)| = 1 for |z| = 1. So by the first part we have g(z0) = 0 for some z0 ∈ D. That is

f(z0)− a
1− āf(z0)

= 0.

Hence f(z0) = a for some z0 ∈ D. This shows that f(D) contains D.
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9. Let f be a holomorphic function from D to itself that is not the identity map z. Prove
that f has at most one fixed point in D.

Answer. Suppose if possible f has two fixed points. Let z1, z2 ∈ D and z1 6= z2 such that
f(z1) = z1 and f(z2) = z2. Consider φz1 : D → D defined by φz1(z) = z−z1

1−z̄1z . Then φz1 is bi-

holomorphic on D and in particular φz1(z1) = 0 and φ−1
z1 (0) = z1. Take g = φz1 ◦ f ◦ φ−1

z1 . Then
g(0) = 0. Take w = φz1(z2) 6= 0 as φz1 is bi-holomorphic. Then g(w) = w. Hence by Schwarz
lemma we have g(z) = z for all z ∈ D. This implies f(z) = z which is a contradiction.
Therefore f has at most one fixed point in D.
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