(i) Answer all questions. (ii) $B_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$. (iii) $\mathbb{H}=$ upper half plane. (iv) $C_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. (v) $\mathbb{A}_{1,2}(0)=\{z \in \mathbb{C}: 1<|z|<2\}$.

1. Let $f: \mathbb{C} \rightarrow \mathbb{H}$ be a holomorphic function. Prove that f is a constant.

Answer: Consider $g: \mathbb{C} \rightarrow \mathbb{C}$ defined by $g(z)=e^{i f(z)}$. Clearly, g is holomorphic on \mathbb{C} as f is so. Let $f=u+i v$. Then $v=\operatorname{Im}(f) \geq 0$. Now for all $z \in \mathbb{C}$

$$
|g(z)|=\left|e^{(-v+i u)}\right|=e^{-v} \leq 1
$$

as $v \geq 0$. Therefore g is a bounded entire function. So by Liouville's theorem, g is constant and hence f is constant.
2. Identify all the singularities of the following function and determine the nature of each singularity

$$
\frac{z}{e^{z}-1}
$$

Answer: Let $f(z)=\frac{z}{e^{z}-1}$. If $e^{z}-1=0$, then $z=2 k \pi i$ for $k \in \mathbb{Z}$. Therefore the set $\{2 k \pi i: k \in \mathbb{Z}\}$ is the singularity of f. Now $\lim _{z \rightarrow 0} z f(z)=0$ and hence $z=0$ is a removal singularity and $z=2 k \pi i$ for $k \neq 0$ are the simple poles of f as $\lim _{z \rightarrow 2 k \pi i} f(z)=\infty$.
3. Calculate the residues of the following functions at each of the poles: $\frac{\sin z}{z^{2}}$ and $\frac{\cos z}{z^{2}}$.

Answer: Clearly 0 is a simple pole of the both functions. From the Taylor series of sinz and cosz, we have $\frac{\sin z}{z^{2}}=\frac{1}{z}-\frac{z}{3!}+\frac{z^{3}}{5!}-\ldots$ and $\frac{\cos z}{z^{2}}=\frac{1}{z^{2}}-\frac{1}{2!}+\frac{z^{2}}{4!}-\ldots$

Therefore $\operatorname{Res}\left(\frac{\sin z}{z^{2}}, 0\right)=1$ and $\operatorname{Res}\left(\frac{\cos z}{z^{2}}, 0\right)=0$.
4. Let $z=a$ be a pole of order n of a function f. Prove that $z=a$ is a pole of order $n+1$ of f^{\prime}.

Answer. Since f has a pole of order n at $z=a$, then $f(z)=\frac{a_{-n}}{(z-1)^{n}}+\ldots+\frac{a_{-1}}{(z-1)}+G(z)$ where $a_{-n} \neq 0$ and G is holomorphic in some neighborhood of $z=a$. Differentiating f we have $f^{\prime}(z)=\frac{-n a_{-n}}{(z-1)^{n+1}}+\ldots+\frac{-a_{-1}}{(z-1)^{2}}+G^{\prime}(z)$. Since $a_{-n} \neq 0$, so f^{\prime} has a pole of order $n+1$ at $z=a$.
5. Use the residue theorem to compute the following integral

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x
$$

Answer. Let $f(z)=\frac{1}{z^{4}+1}$. Then $z=\frac{(1+i)}{\sqrt{2}}, \frac{(-1+i)}{\sqrt{2}}, \frac{(1-i)}{\sqrt{2}}$ and $\frac{(-1-i)}{\sqrt{2}}$ are the poles of f. Let $R>1$ be any real number. Let γ be a closed curve bounded by the upper half circle with radius R and the interval $[-R, R]$ on the real axis. Then by Residue formula we have

$$
\int_{\gamma} f=2 \pi i\left[\operatorname{Res}\left(f, \frac{(1+i)}{\sqrt{2}}\right)+\operatorname{Res}\left(f, \frac{(-1+i)}{\sqrt{2}}\right)\right]=2 \pi i\left(\frac{1}{2 i}\right)=\frac{\pi}{\sqrt{2}}
$$

where $\operatorname{Res}\left(f, \frac{(1+i)}{\sqrt{2}}\right)=-\frac{1+i}{4 \sqrt{2}}$ and $\operatorname{Res}\left(f, \frac{(-1+i)}{\sqrt{2}}\right)=-\frac{1-i}{4 \sqrt{2}}$

Again

$$
\int_{\gamma} \frac{1}{z^{4}+1} d z=\int_{-R}^{R} \frac{1}{x^{4}+1} d x+\int_{0}^{\pi} \frac{i R e^{i \theta}}{R^{4} e^{4 i \theta}+1} d \theta
$$

Now $\left|\int_{0}^{\pi} \frac{i R e^{i \theta}}{R^{4} e^{i t \theta}+1} d \theta\right| \leq \frac{R \pi}{R^{4}-1}$ which is tending to zero as $R \rightarrow \infty$. Hence from the above we have

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\pi}{\sqrt{2}}
$$

6.Let Ω be a simply connected domain and $0 \notin \Omega$. Find all the branches of $z^{\frac{1}{2}}$ in Ω.

Answer. Let $z=r e^{i \theta},-\pi<\theta \leq \pi$. Then $z^{\frac{1}{2}}=r^{\frac{1}{2}} e^{\frac{i(\theta+2 k \pi)}{2}}$ for k is any integer and $-\pi<\theta<\pi$. Then for $k=0, w_{0}=r^{\frac{1}{2}} e^{i \frac{\theta}{2}}$ and for $k=1$, $w_{1}=r^{\frac{1}{2}} e^{i \frac{(\theta+2 \pi)}{2}}=-r^{\frac{1}{2}} e^{i \frac{\theta}{2}}$ for $-\pi<\theta<\pi$. These are the two branches of $z^{\frac{1}{2}}$ in Ω.
7. Prove that every bi-holomorphic map of \mathbb{C} has the form $f(z)=a z+b$, where $a \neq 0$ and b are in \mathbb{C}.

Answer: Let f be a bi-holomorphic map on \mathbb{C}. Then f has a pole at ∞ i.e. $\lim _{|z| \rightarrow \infty}|f(z)|=$ ∞. Suppose if not, then there exists a sequence of complex number $\left\{z_{n}\right\}$ such that $\left|z_{n}\right| \rightarrow \infty$ but $\left|f\left(z_{n}\right)\right| \leq M$ for all n for some $M>0$. Since f is injective $\left\{f\left(z_{n}\right)\right\}$ is a non constant sequence and subsequence of $\left\{f\left(z_{n}\right)\right\}$ converges. Let $\left\{f\left(z_{n_{k}}\right)\right\}$ converges to w_{0}. Suppose g is an inverse of the holomorphic function f. Then $g\left(f\left(z_{n_{k}}\right)\right) \rightarrow g\left(w_{0}\right)$. But $g\left(f\left(z_{n_{k}}\right)\right)=z_{n_{k}} \rightarrow g\left(w_{0}\right)$ which is a contradiction. Hence f has a pole at ∞.
Claim: If f has a pole at ∞, then f is a polynomial.
Let f has Taylor series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Consider $g(z)=f\left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} a_{n} \frac{1}{z^{n}}$. So if f has a pole of order m at ∞ then g has a pole at zero of order m. So the Laurent expression of g is of the form

$$
g(z)=\frac{b_{-m}}{z^{m}}+\frac{b_{-(m-1)}}{z^{m}}+\ldots+\frac{b_{-1}}{z}+b_{0}+b_{1} z+\ldots
$$

Now uniqueness of the power series of f, we have $b_{-k}=a_{k}$ for $0 \leq k \leq m a_{k}=0$ for $k>m$. Hence $f(z)=a_{0}+a_{1} z+\ldots+a_{m} z^{m}$. But f is injective so we have $f(z)=a z+b$ where $a \neq 0$ as f has a pole.
8. Let $\epsilon>0$ and $f: B_{1+\epsilon}(0) \rightarrow \mathbb{C}$ be a non-constant holomorphic function. Assume that $|f(z)|=1$ if $|z|=1$. (i) Prove that f has a zero in \mathbb{D}. (ii) Prove that $f(\mathbb{D})$ contains \mathbb{D}.

Answer. (i) Suppose f has no zero in the disc \mathbb{D}. Using maximum modulus principle we have $|f(z)|<1$ for all $z \in \mathbb{D}$ as $|f(z)|=1$ for $|z|=1$. Consider $g(z)=\frac{1}{f(z)}$ for $z \in \mathbb{D}$. Then g is holomorphic. Also $|g(z)|=\frac{1}{|f(z)|}>1$ for all $z \in \mathbb{D}$ and $|g(z)|=1$ for $|z|=1$ which is not possible due to maximum modulus principle. Hence f has a zero in \mathbb{D}.
(ii) For $a \in \mathbb{D}$ define $\phi_{a}: \mathbb{D} \rightarrow \mathbb{D}$ by

$$
\phi_{a}(z)=\frac{z-a}{1-\bar{a} z} .
$$

Consider $g=\phi_{a} \circ f$. Since $\phi_{a}(\{z \in \mathbb{C}:|z|=1\}) \subset\{z \in \mathbb{C}:|z|=1\}$ and $|f(z)|=1$ for $|z|=1$, $|g(z)|=1$ for $|z|=1$. So by the first part we have $g\left(z_{0}\right)=0$ for some $z_{0} \in \mathbb{D}$. That is

$$
\frac{f\left(z_{0}\right)-a}{1-\bar{a} f\left(z_{0}\right)}=0
$$

Hence $f\left(z_{0}\right)=a$ for some $z_{0} \in \mathbb{D}$. This shows that $f(\mathbb{D})$ contains \mathbb{D}.
9. Let f be a holomorphic function from \mathbb{D} to itself that is not the identity map z. Prove that f has at most one fixed point in \mathbb{D}.

Answer. Suppose if possible f has two fixed points. Let $z_{1}, z_{2} \in \mathbb{D}$ and $z_{1} \neq z_{2}$ such that $f\left(z_{1}\right)=z_{1}$ and $f\left(z_{2}\right)=z_{2}$. Consider $\phi_{z_{1}}: \mathbb{D} \rightarrow \mathbb{D}$ defined by $\phi_{z_{1}}(z)=\frac{z-z_{1}}{1-z_{1} z}$. Then $\phi_{z_{1}}$ is biholomorphic on \mathbb{D} and in particular $\phi_{z_{1}}\left(z_{1}\right)=0$ and $\phi_{z_{1}}^{-1}(0)=z_{1}$. Take $g=\phi_{z_{1}} \circ f \circ \phi_{z_{1}}^{-1}$. Then $g(0)=0$. Take $w=\phi_{z_{1}}\left(z_{2}\right) \neq 0$ as $\phi_{z_{1}}$ is bi-holomorphic. Then $g(w)=w$. Hence by Schwarz lemma we have $g(z)=z$ for all $z \in \mathbb{D}$. This implies $f(z)=z$ which is a contradiction. Therefore f has at most one fixed point in \mathbb{D}.

