Final Examination

(i) Answer all questions. (ii) $B_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$. (iii) $\mathbb{H}=$ upper half plane. (iv) $C_r(z_0) = \{z \in \mathbb{C} : |z - z_0| = r\}$. (v) $\mathbb{A}_{1,2}(0) = \{z \in \mathbb{C} : 1 < |z| < 2\}$.

1. Let $f : \mathbb{C} \to \mathbb{H}$ be a holomorphic function. Prove that f is a constant.

Answer: Consider $g : \mathbb{C} \to \mathbb{C}$ defined by $g(z) = e^{if(z)}$. Clearly, g is holomorphic on \mathbb{C} as f is so. Let f = u + iv. Then $v = Im(f) \ge 0$. Now for all $z \in \mathbb{C}$

$$|g(z)| = |e^{(-v+iu)}| = e^{-v} \le 1$$

as $v \ge 0$. Therefore g is a bounded entire function. So by Liouville's theorem, g is constant and hence f is constant.

2. Identify all the singularities of the following function and determine the nature of each singularity

$$\frac{z}{e^z - 1}$$

Answer: Let $f(z) = \frac{z}{e^z - 1}$. If $e^z - 1 = 0$, then $z = 2k\pi i$ for $k \in \mathbb{Z}$. Therefore the set $\{2k\pi i : k \in \mathbb{Z}\}$ is the singularity of f. Now $\lim_{z\to 0} zf(z) = 0$ and hence z = 0 is a removal singularity and $z = 2k\pi i$ for $k \neq 0$ are the simple poles of f as $\lim_{z\to 2k\pi i} f(z) = \infty$.

3. Calculate the residues of the following functions at each of the poles: $\frac{\sin z}{z^2}$ and $\frac{\cos z}{z^2}$.

Answer: Clearly 0 is a simple pole of the both functions. From the Taylor series of sinz and cosz, we have $\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \dots$ and $\frac{\cos z}{z^2} = \frac{1}{z^2} - \frac{1}{2!} + \frac{z^2}{4!} - \dots$

Therefore $Res(\frac{sinz}{z^2}, 0) = 1$ and $Res(\frac{cosz}{z^2}, 0) = 0$.

4. Let z = a be a pole of order n of a function f. Prove that z = a is a pole of order n + 1 of f'.

Answer. Since f has a pole of order n at z = a, then $f(z) = \frac{a_{-n}}{(z-1)^n} + \ldots + \frac{a_{-1}}{(z-1)} + G(z)$ where $a_{-n} \neq 0$ and G is holomorphic in some neighborhood of z = a. Differentiating f we have $f'(z) = \frac{-na_{-n}}{(z-1)^{n+1}} + \ldots + \frac{-a_{-1}}{(z-1)^2} + G'(z)$. Since $a_{-n} \neq 0$, so f' has a pole of order n + 1 at z = a.

5. Use the residue theorem to compute the following integral

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx.$$

Answer. Let $f(z) = \frac{1}{z^4+1}$. Then $z = \frac{(1+i)}{\sqrt{2}}, \frac{(-1+i)}{\sqrt{2}}, \frac{(1-i)}{\sqrt{2}}$ and $\frac{(-1-i)}{\sqrt{2}}$ are the poles of f. Let R > 1 be any real number. Let γ be a closed curve bounded by the upper half circle with radius R and the interval [-R, R] on the real axis. Then by Residue formula we have

$$\int_{\gamma} f = 2\pi i [\operatorname{Res}(f, \frac{(1+i)}{\sqrt{2}}) + \operatorname{Res}(f, \frac{(-1+i)}{\sqrt{2}})] = 2\pi i (\frac{1}{2i}) = \frac{\pi}{\sqrt{2}}$$

where $Res(f, \frac{(1+i)}{\sqrt{2}}) = -\frac{1+i}{4\sqrt{2}}$ and $Res(f, \frac{(-1+i)}{\sqrt{2}}) = -\frac{1-i}{4\sqrt{2}}$

Again

$$\int_{\gamma} \frac{1}{z^4 + 1} dz = \int_{-R}^{R} \frac{1}{x^4 + 1} dx + \int_{0}^{\pi} \frac{iRe^{i\theta}}{R^4 e^{4i\theta} + 1} d\theta.$$

Now $|\int_0^{\pi} \frac{iRe^{i\theta}}{R^4e^{4i\theta}+1} d\theta| \leq \frac{R\pi}{R^4-1}$ which is tending to zero as $R \to \infty$. Hence from the above we have

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = \frac{\pi}{\sqrt{2}}.$$

6.Let Ω be a simply connected domain and $0 \notin \Omega$. Find all the branches of $z^{\frac{1}{2}}$ in Ω .

Answer. Let $z = re^{i\theta}$, $-\pi < \theta \le \pi$. Then $z^{\frac{1}{2}} = r^{\frac{1}{2}}e^{\frac{i(\theta+2k\pi)}{2}}$ for k is any integer and $-\pi < \theta < \pi$. Then for k = 0, $w_0 = r^{\frac{1}{2}}e^{i\frac{\theta}{2}}$ and for k = 1, $w_1 = r^{\frac{1}{2}}e^{i\frac{(\theta+2\pi)}{2}} = -r^{\frac{1}{2}}e^{i\frac{\theta}{2}}$ for $-\pi < \theta < \pi$. These are the two branches of $z^{\frac{1}{2}}$ in Ω .

7. Prove that every bi-holomorphic map of \mathbb{C} has the form f(z) = az + b, where $a \neq 0$ and b are in \mathbb{C} .

Answer: Let f be a bi-holomorphic map on \mathbb{C} . Then f has a pole at ∞ i.e. $\lim_{|z|\to\infty} |f(z)| = \infty$. Suppose if not, then there exists a sequence of complex number $\{z_n\}$ such that $|z_n| \to \infty$ but $|f(z_n)| \leq M$ for all n for some M > 0. Since f is injective $\{f(z_n)\}$ is a non constant sequence and subsequence of $\{f(z_n)\}$ converges. Let $\{f(z_{n_k})\}$ converges to w_0 . Suppose g is an inverse of the holomorphic function f. Then $g(f(z_{n_k})) \to g(w_0)$. But $g(f(z_{n_k})) = z_{n_k} \to g(w_0)$ which is a contradiction. Hence f has a pole at ∞ .

Claim: If f has a pole at ∞ , then f is a polynomial.

Let f has Taylor series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Consider $g(z) = f(\frac{1}{z}) = \sum_{n=0}^{\infty} a_n \frac{1}{z^n}$. So if f has a pole of order m at ∞ then g has a pole at zero of order m. So the Laurent expression of g is of the form

$$g(z) = \frac{b_{-m}}{z^m} + \frac{b_{-(m-1)}}{z^m} + \dots + \frac{b_{-1}}{z} + b_0 + b_1 z + \dots$$

Now uniqueness of the power series of f, we have $b_{-k} = a_k$ for $0 \le k \le m$ $a_k = 0$ for k > m. Hence $f(z) = a_0 + a_1 z + \ldots + a_m z^m$. But f is injective so we have f(z) = az + b where $a \ne 0$ as f has a pole.

8. Let $\epsilon > 0$ and $f : B_{1+\epsilon}(0) \to \mathbb{C}$ be a non-constant holomorphic function. Assume that |f(z)| = 1 if |z| = 1. (i) Prove that f has a zero in \mathbb{D} . (ii) Prove that $f(\mathbb{D})$ contains \mathbb{D} .

Answer.(i) Suppose f has no zero in the disc \mathbb{D} . Using maximum modulus principle we have |f(z)| < 1 for all $z \in \mathbb{D}$ as |f(z)| = 1 for |z| = 1. Consider $g(z) = \frac{1}{f(z)}$ for $z \in \mathbb{D}$. Then g is holomorphic. Also $|g(z)| = \frac{1}{|f(z)|} > 1$ for all $z \in \mathbb{D}$ and |g(z)| = 1 for |z| = 1 which is not possible due to maximum modulus principle. Hence f has a zero in \mathbb{D} .

(ii) For $a \in \mathbb{D}$ define $\phi_a : \mathbb{D} \to \mathbb{D}$ by

$$\phi_a(z) = \frac{z-a}{1-\bar{a}z}.$$

Consider $g = \phi_a \circ f$. Since $\phi_a(\{z \in \mathbb{C} : |z| = 1\}) \subset \{z \in \mathbb{C} : |z| = 1\}$ and |f(z)| = 1 for |z| = 1, |g(z)| = 1 for |z| = 1. So by the first part we have $g(z_0) = 0$ for some $z_0 \in \mathbb{D}$. That is

$$\frac{f(z_0) - a}{1 - \bar{a}f(z_0)} = 0.$$

Hence $f(z_0) = a$ for some $z_0 \in \mathbb{D}$. This shows that $f(\mathbb{D})$ contains \mathbb{D} .

9. Let f be a holomorphic function from \mathbb{D} to itself that is not the identity map z. Prove that f has at most one fixed point in \mathbb{D} .

Answer. Suppose if possible f has two fixed points. Let $z_1, z_2 \in \mathbb{D}$ and $z_1 \neq z_2$ such that $f(z_1) = z_1$ and $f(z_2) = z_2$. Consider $\phi_{z_1} : \mathbb{D} \to \mathbb{D}$ defined by $\phi_{z_1}(z) = \frac{z-z_1}{1-\overline{z_1}z}$. Then ϕ_{z_1} is bi-holomorphic on \mathbb{D} and in particular $\phi_{z_1}(z_1) = 0$ and $\phi_{z_1}^{-1}(0) = z_1$. Take $g = \phi_{z_1} \circ f \circ \phi_{z_1}^{-1}$. Then g(0) = 0. Take $w = \phi_{z_1}(z_2) \neq 0$ as ϕ_{z_1} is bi-holomorphic. Then g(w) = w. Hence by Schwarz lemma we have g(z) = z for all $z \in \mathbb{D}$. This implies f(z) = z which is a contradiction. Therefore f has at most one fixed point in \mathbb{D} .